Altcoins Guides

Altcoins

Eine kurze Geschichte von Astraleums

Was ist kryptowährungs-Mining?

Was ist eine Kryptowährung?

Glossar der kryptowährungen Schlüsselwörter und -phrasen

Astraleum (ETH) für Anfänger

Bitcoin Cash (BCH) für Anfänger

Was ist Ripple?

Was ist EOS?

Ein Anfänger-Leitfaden zum Bergbau neuer Altcoins

Ein Anfängerführer, wie man Ethereum miniert

Was ist Stellar?

Was ist Litecoin?

Ein Anfänger-Leitfaden zu Blockchain

Was ist Cardano?

Was ist Dash Kryptowährung?

Der Anfänger-Leitfaden zu Stablecoins

Eine Einführung in Tether

Bitcoin vs. Altcoins: Die Unterschiede, die Sie kennen sollten

Tezos für Anfänger

Ein Anfänger-Leitfaden zu Skycoin und dezentralem Internet

TrueUSD: Kann man ihm vertrauen?

Blockchain-Spiele sind auf dem Vormarsch! Hier sind 3 Gründe, warum Fans sie lieben

Eine Einführung in die NEO Kryptowährung und die intelligente Wirtschaft

Fünf Ripple (XRP) Wallets, die Sie in Betracht ziehen sollten

Eine Einführung in das IOTA-Protokoll

Was ist HIVE Blockchain?

What is the DAI stablecoin?

What is Chainlink and why does it matter in the crypto world?

What is Flow – the developer-friendly blockchain?

What is Brave’s Basic Attention Token?

 What is Kusama – a canary network for Polkadot experiments? 

What is a non-fungible token (NFT)?

What is Polygon?

What is NEAR Protocol?

What is Klaytn and how does it work?

What is THORChain?

What is the FTX Token?

What is Axie Infinity?

What is Tron?

What is Terra?

What is Graph Protocol?

What is Algorand?

What is OMG network?

What is Zilliqa?

What is Avalanche?

What is Internet Computer?

What is Ethereum Classic?

What is VeChain?

What is Elrond?

What is Audius?

Eine Einführung in Circle und die USD Coin

Was ist ein Smart Contract?

Was ist ein Mining Pool?

Was ist eine Hash-Rate?

Was ist Proof of Work?

Warum spielt die Dezentralisierung von Kryptowährungen eine Rolle?

Wie man für kryptowährungen minen

Grundlegendes zu Tokenomics

Ein Anfänger-Leitfaden zu Data Mining und kryptographischen Hash-Funktionen

Was sind die besten Strategien für den Bergbau von Kryptowährung?

Die besten GPUs für Kryptowährungs-Mining

Stablecoins: Was sind die Risiken und Vorteile?

Die fünf besten Privacy Kryptowährungen

Ein Leitfaden zur Ripple-Produktlinie: XCurrent, XRapid und XVia

The use of blockchain technology in digital advertising

Vier Projekte im Bereich der Datenbank-Sharding

Was sind Knoten in Kryptowährung und warum brauchen wir sie?

Explore other guides

Beginner

What is Avalanche?

Avalanche has established itself as the most scalable among its peers, despite the many challenges commonly associated with layer-1 blockchains.

Some of the most promising value propositions of Avalanche include its ability to offer a low-latency block time up to one second, compatibility with Ethereum Virtual Machine (EVM) and, most importantly, a suitable user experience that edges out the majority of its peers. Just before we proceed to unpack the subject matter, let’s take a look at a brief history of the layer-1 blockchain.

Brief history of Avalanche

Avalanche is one of two portfolio projects (together with Ryval) developed by Ava Lab – a blockchain company based in Brooklyn. A team of computer specialists, including Emin Gun Sirer, Kevin Sekniqi, and Ted Yin, co-founded the company in 2018, setting the record as the first scalable layer-1 blockchain.

Prior to the launch of Avalanche, most layer-1 blockchains encountered scaling issues, necessitating the integration of layer-2 blockchains in most situations. As a result, there were no major attempts to create a scalable layer-1 blockchain from scratch. 

However, Ava lab, made up of more than 50 experienced tech specialists, took a new approach that is quite unique from anyone that has been previously adopted by other layer-1 blockchains. 

Specifically, Avalanche made use of three separate blockchains on its platform all of which operate as one and is powered by its native token, AVAX.  Likewise, by adopting multiple blockchain infrastructures, Avalanche employs multiple consensus mechanisms which further make it a more superior blockchain network among its peers.

What is Avalanche?

Avalanche is a fast-growing layer-1 proof-of-stake (PoS) blockchain and smart contract platform that aims to address a major pain point in blockchain dilemmas – blockchain scalability, for example, without giving up decentralisation. 

Avalanche employs a multiple blockchain architecture composed of ‘the X-chain,’ ‘C-chain,’ and ‘P-chain,’ three of which constitute the platform’s mainnet. 

By leveraging multiple blockchain infrastructures, the platform enables the creation of custom and interoperable blockchain networks as well as, hosting numerous decentralised applications (dApps).

Also, unlike its fellow layer-1 blockchain counterparts, Avalanche is able to achieve a higher throughput of up to 4,500 transactions per second (TPS), edging out Polkadot which came close, by a margin of 3,000 TPS.

Because Avalanch is built on the most recent Byzantine fault tolerance protocol, it can achieve a very high throughput (BFTP). Among other things, BFTP guarantees a speedy validation process by establishing a consensus model known as randomisation, in which validators are selected at random for each transaction within the network.

How does Avalanche work?

Avalanche’s technical architecture is unique in the sense that it is currently the only blockchain that operates more than two blockchains in a single mainnet, while leveraging a proprietary Virtual Machine (VM), known as the Avalanche Virtual Machine (AVM).

The Avalanche mainnet is made up of three integrated blockchains which serve different purposes. The first, which is known as Exchange Chain (X-Chain) is used for creating and exchanging both the native asset, AVAX, and other digital assets. Notably, digital assets that are created in this context are compelled to follow the ERC-20 token standard.

The second, known as the Platform Chain (P-Chain) facilitates the creation of subnets (sidechains or smart contracts) which makes the integration of dApps possible, while the third chain known as Contract Chain (C-Chain) is responsible EVM (Ethereum Virtual Machine) contract execution. Basically, the C-Chain coordinates the network’s validators, track active subnets, and facilitate the creation of new ones.

While the X-Chain make use of Avalanch consensus protocol, both the C-Chain and P-Chain, on the other hand, uses a consensus mechanism known as the Snowman consensus protocol. 

Specifically, the Avalanche protocol ensures that all validating nodes within the X-chain work in parallel to check other validators’ transaction confirmation randomly. In addition, it is responsible for improving speed and scalability across the integrated blockchains while running all the processes on a single mainnet.

Furthermore, Avalanche makes use of Snowball – an Ava Labs-designed Proof-of-Stake (PoS) consensus mechanism that requires users to stake AVAX in order to become transaction validators. To participate in consensus, validators must stake at least 2,000 AVAX tokens, or perhaps, have your AVAX delegated to a validator of choice. 

Avalanch native token – AVX

Avalanch, like most decentralised protocols, has its own native asset called AVAX, which serves as the network’s utility token as well as other hosted subnets. Notably, the ERC-20 token allows for interoperability across subnets and the mainnet.

AVAX tokens can be staked by community members in order to become validators, who can earn up to 11% annual percentage yield (APY) in the long run.

Currently, AVAX boasts a maximum supply of 720 million tokens with an initial supply after the initial coin offering (ICO) pegged at 360 million. That said, all fees paid on the network being burned owing to the deflationary mechanism employed by the protocol.

Avalanche governance

Avalanche enables key network modifications to be implemented dynamically based on community members’ input. While a participant must have staked AVAX tokens, the implementation process is dependent on genuine activities like how active a node participates in the validation process.

Also, while proposals may be presented by any participating node, they undergo a system-wide voting procedure that is underpinned in the Avalanche consensus mechanism.

Ultimately, Avalanche’s EVM compatibility makes it a highly promising project that could see growing interest from dApp projects looking for a more scalable blockchain with reduced costs.

Disclaimer: The views and opinions expressed by the author should not be considered as financial advice. We do not give advice on financial products.